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1. Introduction

Oxides exhibit a wide range of functional characteristics that make them
suitable for numerous technological applications. In many of these applica-
tions, the oxides phases form epitaxial systems with the underlying support
structure, giving rise to internal stresses that affect both surface mass re-
arrangement and bulk point defect distributions. In oxides, however, point
defects can be charged, and their concentrations are also influenced by
space charge formation and the associated internal electric fields. We
present a continuum model for ionic solids containing charged point de-
fects coupled with elasticity and electrostatics. Using a 3D finite element
scheme, we demonstrate the effects of these defects on the film’s mor-
phological stability and characterize incipient instabilities in terms of model
parameters.

2. Theory

Here, we present a thermodynamically-consistent set of equations to de-
scribe the free surface evolution of an oxide system containing mobile
charged point defects. Our model includes the elastic effects of the film-
substrate misfit strain, electrostatic space charge to account for the pres-
ence of charged point defects and interfaces, and a dynamic surface up-
date procedure to evolve the film-vapor interface. The equation governing
the evolution of the film’s free surface is a statement of mass conservation.
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In the above equation, Ω is the atomic volume of the defect species, and the
speed at which the interface propagates along its normal direction v(n) in-
cludes contributions from the atomic surface diffusive flux jα and the evap-
orative flux Ji, which expels mass along the outward unit normal ni. The
surface diffusive flux is proportional to the gradient of a surface diffusion
potential that includes elastic, electric, defect, and surface energies.
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Here, Mαβ are the surface mobility coefficients, σij and εij are the elastic
stress and strain, Di and Ei are the electric displacement and field, N is
the number of defects per volume, G is the free energy of defects, γ is the
surface energy, and κ is twice the mean surface curvature. Since solid ox-
ides are often brittle, we assume that the system is well-represented using
small-strain elasticity. {
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In this equation, we introduce the elastic coefficients Cijkl, mechanical dis-
placements ui, strain εij ≡ 1

2 (ui;j + uj;i), and eigenstrain ε◦ij. Assuming that
point defects achieve their thermal equilibrium distribution much faster than
the interface propagates, their concentrations and electrostatic effects can
be determined using the non-linear Maxwell-Boltzmann equation.
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This includes the electrostatic potential φ, permittivity ε̂ij, elementary
charge e, valency z, reference concentration N ◦, formation energy F ,
Boltzmann constant k, and absolute temperature T .

3. Non-Dimensionalization

We assume isotropic material parameters

Mαβ = Maαβ
ε̂ij = ε̂gij
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and perform a change of variables so that every length is normalized by `,
time by τ , energy by W, evaporation flux by J , surface diffusive flux by ,
and electrostatic potential by V. We choose these scaling factors to remove
as many material properties as possible from the equations, which simulta-
neously simplifies the equations and suggests natural quantities-of-interest
for further analysis.
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The energy length scale is arbitrary and we choose to follow [2] and scale
energies by the strain energy density of the flat, defect-free film.

Energy: W = 2G(ε◦)2
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With all quantities understood to be non-dimensionalized, we can rewrite
our governing equations in the following form.
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−ε̃(φ,i);i = exp (−φ) (8)

In these equations, we have defined an electrostatic parameter and the
rescaled elastic coefficients now depend entirely on geometric quantities.
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4. Solution Method

The governing equations are non-dimensionalized and a three-dimensional
finite element method is used to solve the elasticity and electrostatics equa-
tions in the bulk of the thin film. The nonlinearity in the Poisson-Boltzmann
equation is handled using a fixed-point iteration. Finite element meth-
ods require a discretization of the spatial domain, for which we choose
isoparametric quadratic elements. This particular choice enables compu-
tation of the geometrical quantities necessary for evolving the interface.

Figure 5: The thin film is assumed to be in epitaxy with a rigid substrate,
so any misfit is incorporated as an eigenstrain in the film and we can fix null
displacements at the film-substrate interface. Space charge theory treats
the film as one half of an electric dipole, so we electrically ground the film’s
free surface and there will be no surface charge at the base of the film.
Through these choices, we have incorporated the effects of the surround-
ings as boundary conditions and the computational domain consists solely
of the thin film region.

Since we have exhausted the continuity of the finite element mesh in com-
puting the surface diffusion potential (which is now piecewise determined
on element faces), we resort to Fourier approximation to compute the re-
maining surface derivatives. Fourier methods are particularly well-suited
to this application because they exhibit rapid convergence and naturally
account for periodic boundary conditions. Since the surface geometry is
generally curvilinear, we must map the physical surface to a flat, uniform
space where these quantities can be computed.

( a ) ( b )

( c ) ( d )

Figure 6: The finite elements chosen allow computation of the chemical
potential on element faces (a). The discrete fourier transform (DFT) is then
used to smoothly interpolate nodal values (b) and, when combined with
surface geometrical information, facilitates high accuracy approximations
the surface diffusive flux (c) and normal velocity (d).

5. Results

Here, we demonstrate our model and solution scheme for the case of an
initial sinusoidal perturbation in both the x1 and x2 directions. Material prop-
erties are chosen to roughly reflect those of TiO2. In addition to sinusoidal
perturbations, were are currently exploring the behavior of dot and pit mor-
phologies (modeled as Guassians) which are readily observed in thin film
systems, but require a more complex analysis.

Figure 7: Patterns in the surface diffusion potential as a function of wave
amplitude for a double-sinusoidal perturbation. The upper-left image cor-
responds to an unperturbed surface, and the amplitude increases left-to-
right, top-to-bottom by 0.01 in the non-dimensional length scale.

Figure 8: Through taking surface derivatives of the above diffusion poten-
tials, we obtain the surface normal velocity, the speed at which the free
interface propagates in the direction of its normal vector.
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Figure 9: A surface perturbed by a double sinusoid with amplitude 0.01 is
evolved using an explicit time marching scheme. The time increment be-
tween frames is 10−5 on the non-dimensional time scale. This sequence
demonstrates an instability that supresses the perturbation and returns the
film to a flat morphology. By appropriate choice of the initial film geometry, it
is also possible to achieve a roughening instability where mass rearrange-
ment is driven to enhance surface features.
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